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Motivation

Fishers’s scale of evidence, particularly the α = 0.05 threshold,
has been used in literally millions of serious scientific studies, and
takes a good claim to being the 20th century’s most influential
piece of applied mathematics.

Bradley Efron, 2010

M.E. Pérez (UPR Ŕıo Piedras) Building bridges 3 / 55



Motivation

A “Passport for Publication”

Current strategy for claiming new scientific discoveries is based on the
appearance of a single study with a “statistically significant” result.

p- value of less than 0.05 has become a “passport for publication” (Cox
2015).

”Negative” studies are extremely difficult to publish.
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Motivation

The crisis of p < 0.05

Bayesian literature has been criticizing for several decades the
implementation of hypothesis testing with fixed significance levels, and the
use of the scale p value < 0.05.

The natural alternative to Null Hypothesis Significance (NHST) methods
would be using exact posterior probabilities for the hypothesis, which
automatically incorporate adjustments by sample size; unfortunately, these
probabilities are rarely available to scientists, while tools for calculating
p-values are widely available.

This fact suggests finding bridges between p-values and posterior
probabilities of hypothesis, thus improving the decision making process.
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The Adaptive α level

The Adaptive α level

One such bridge is the the Adaptive α Level (Pérez and Pericchi 2014,
Stat Probabil Lett), a correction for p-values developed to obtain the same
asymptotic behavior of posterior probabilities.

A classical problem in the theory of statistics has been: How can the
p-values be corrected from their dependence on the Sample Size?

In our view it can be solved as: How can the p-values be calibrated so that
to have, the same asymptotic behavior as posterior probabilities?
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The Adaptive α level

The adaptive α level proposed by Pérez and Pericchi is

αn∗(q) =
[χ2

α(q) + q log(n∗)]
q
2
−1

2
q
2
−1n∗

q
2 Γ(q2 )

× Cα (1)

which is a simple (approximate) calibration for the significance level.

Still the constant Cα has to be determined.
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The Adaptive α level Special case: q = 1

Special case: q = 1

α(n) =
Cα√

n × (log(n∗) + χ2
α(1))

,

the square root n × log(n) formula.

This formula has antecedents in Cox and Hinkley (1974), Good (1992)
(both with typos), and gives a clear guidance on how to decrease the scale
of p-values with the sample size.

n∗ is the Effective Sample Size, (Berger, Bayarri and Pericchi, 2012).
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The Adaptive α level A strategy to find Cα

A strategy to find Cα

The calibration will assume that we believe the α level is adequate for a
specific sample size.

α(n) =
α ∗

√
n0 × (log(n0) + χ2

α(1))√
n∗ × (log(n∗) + χ2

α(1))
.

Here n0 is the sample size of a reference experiment, which is the result
of a experimental design where the experimenter has specified a Type I
error α and a Type II error β for a specific point of statistical importance.

For n0, α(n) = α, but decreases (increases) as the sample size grows
(decreases).
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The Adaptive α level A strategy to find Cα

Variation of the significance level with sample size

Assume n0 = 10 and α = 0.05

Sample Size α(n∗)

10 0.0500
50 0.0199
100 0.0135
500 0.0055

1000 0.0038
10000 0.0011
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

Adaptive Alpha for linear Models

(Vélez et al, 2022)
We want to compare the following two nested linear models

Mi : y = Xiδi + ϵi , ϵi ∼ N(0, σ2
i In)

and
Mj : y = Xjβj + ϵj , ϵj ∼ N(0, σ2

j In).

Our hypothesis test is, then

H0 : Model Mi versus H1 : Model Mj ,
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

The Bayes Factor is:

B01(y) =

∫
f (y|Xiδi , σ

2
i In)π

N(δi , σi )dδidσi∫
f (y|Xjβj , σ

2
j In)π

N(βj , σj)dβjdσj

.

The construction of adaptive alpha is based on B01(y), but this does not
require the assessment of prior distributions by the user. Instead we will
use well established statistical practices to directly construct summaries of
evidence.
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

Laplace’s asymptotic method, under regularity conditions, gives the
following approximation

BL
01 =

f (y|Xi δ̂i ,S
2
i In)|Îi |−1/2

f (y|Xj β̂j ,S2
j In)|Îj |−1/2

· (2π)
i/2πN(δ̂i ,Si )

(2π)j/2πN(β̂j , Sj)
, (2)

where δ̂i , S
2
i , β̂j ,S

2
j , are MLE’s and Îi , Îj observed information matrices

respectively for Mi and Mj .
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

Since the first factor typically goes to ∞ or to 0 as the sample size
accumulates, but the second factor stays bounded, it is useful to rewrite
(2) as:

− 2 log(B01) = −2 log

(
f (y|Xi δ̂i ,S

2
i In)

f (y|Xj β̂j ,S2
j In)

)
− 2 log

(
|Îj |1/2

|Îi |1/2

)
+ C . (3)
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

f (y|Xi δ̂i , S
2
i In)

f (y|Xj β̂j , S2
j In)

=

(
S2
j

S2
i

) n
2

=

(
yt(I−Hj)y

yt(I−Hi )y

) n
2

,

where H = X(XtX)−1Xt and the Observed Fisher Information Matrix
(OFIM) with i adjustable parameters is

Îi (δi ) =
1

S2
i

· Xt
iXi .

So (3) can be written as:

− 2 log(B01) = −(n − 1) log

(
yt(I−Hj)y

yt(I−Hi )y

)
− log

(
|Xt

jXj |
|Xt

iXi |

)
+ C . (4)
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

If we denote by gn,α(q) the quantile of the test statistic fixed by α, using

−2 log(B01) = −(n − 1) log

(
yt(I−Hj)y

yt(I−Hi )y

)
− log

(
|Xt

jXj |
|Xt

iXi |

)
+ C ,

instead of letting the quantile fixed (as under the significance principle) we
re-define significance as a quantity according to the following rule:

gα(Xi ,Xj ,n)
(q) = gn,α(q) + log

(
|Xt

jXj |
|Xt

iXi |

)
. (5)

Then the Bayes factor will converge to a constant (and gα(Xi ,Xj ,n)
(q)

replace the fixed quantile).
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

Theorem

(Casella et al, 2009)

Under H0, the sampling distribution of
yt(I−Hj)y

yt(I−Hi )y
is a beta distribution,

yt(I−Hj)y

yt(I−Hi )y
∼ Beta

(
n − j

2
,
j − i

2

)
.

Theorem

Under H0, when n → ∞, −(n − 1) log

(
yt(I−Hj)y

yt(I−Hi )y

)
converges in

distribution to a Gamma

(
q
2 ,

n−j
n−1

2

)
with q = j − i
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Adaptive Alpha for Linear Models Comparing Nested Linear Models

Now the α to the approximate upper tail in a Gamma Ga

(
q
2 ,

n−j
n−1

2

)
:

α ≈
gn,α(q)

q
2
−1 exp{− n−j

2(n−1) · gn,α(q)}(
2(n−1)
n−j

)q/2−1
Γ
(q
2

) .

If we replace the fixed quantile gn,α(q) by gα(Xi ,Xj ,n)
(q), the following result

is obtained:

α(Xi ,Xj ,n)(q) =
[gn,α(q) + log(b)]

q
2
−1

b
n−j

2(n−1) ·
(
2(n−1)
n−j

)q/2−1
Γ
(q
2

)×Cα, with b =
|Xt

jXj |
|Xt

iXi |
. (6)
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Adaptive Alpha for Linear Models Strategies for Selecting the Calibration Constant

Strategies for Selecting the Calibration Constant

The strategy of a minimal balanced experimen
Consider the one-way layout. Here the minimal balanced experiment
has ni = 2 for each group and n = 2m = 2(q + 1).
Then,

Cα = α ·
(2q/(q + 1))

q+1
2(2q+1)Γ

(q
2

)
[gα(q) + log(2q/(q + 1))]

q
2
−1

where α is the desired level for the minimal sample. The case m = 2 is
of particular interest since q = 1, then the calibration constant Cα is:

Cα = α ·
√

π · gα(1)

M.E. Pérez (UPR Ŕıo Piedras) Building bridges 19 / 55



Adaptive Alpha for Linear Models Strategies for Selecting the Calibration Constant

The strategy of a simple approximation.
The simplest approximation in (2), which is implicit in the BIC
approximation, comes from assuming priors πN(βj ,Sj), π

N(δi , Si ) to

be N((βj , σj)|(βj , Sj), Î
∗(−1)
j ), N((δi , σi )|(δi , Si ), Î

∗(−1)
i ) respectively,

where Î ∗k = Îk/n
∗, with Îk being the observed Fisher Information

matrix, but noting that n∗ is the Effective Sample Size, mentioned
before. This leads to a C = 1 in (4) and then a

Cα = exp

{
− n − j

2(n − 1)
· gn,α(q)

}
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Adaptive Alpha for Linear Models Strategies for Selecting the Calibration Constant

The strategy based on the Prior Based Information Criterion
PBIC
(Bayarri et al. 2019).

PBIC improves BIC type approximations by

i) replacing the “sample size” n by a more precise “The Effective Sample
Size” TESS ne (Berger, Bayarri and Pericchi, 2014) and

ii) retaining the effect of the prior in the final expression using a flat-tailed
no-normal prior.
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Adaptive Alpha for Linear Models Strategies for Selecting the Calibration Constant

Using PBIC, constant C in (3) is replaced by

C = 2

qi∑
mi=1

log
(1− e−vmi )√

2vmi

− 2

qj∑
mj=1

log
(1− e−vmj )√

2vmj

,

where vml
=

ξ̂ml
[dml

(1+neml
)] with l = i , j corresponding to the Model Mi and

Mj respectively. The ξml
’s come from orthogonal transformations of the

models parameters (see Bayarri et al, 2019)
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Adaptive Alpha for Linear Models Strategies for Selecting the Calibration Constant

Hence

α(b,n)(q) =
[gn,α(q) + log(b) + C ]

q
2
−1

b
n−j

2(n−1) ·
(
2(n−1)
n−j

)q/2−1
Γ
(q
2

) × Cα, (7)

and

Cα = exp

{
− n − j

2(n − 1)
(gn,α(q) + C )

}
.
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Adaptive Alpha for Linear Models Example: Balanced One Way Anova

Example: Balanced One Way Anova

Suppose we have k groups with n observations each, for a total sample size
of kn and let H0 : µ1 = . . . = µk = µ vs H1 : At least one µi different.
Then the design matrices for both models are

X1 =


1
1

.

.

.
1

 ,X2 =



1 0 . . . 0
1 0 . . . 0

.

.

.

.

.

. . . .

.

.

.
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 1 . . . 0

.

.

.

.

.

. . . .

.

.

.
0 0 . . . 1
0 0 . . . 1

.

.

.

.

.

. . . .

.

.

.
0 0 . . . 1



, b =
|Xt

2X2|
|Xt

1X1|
= k−1nk−1

The effective sample size is r , the number of replications.
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Adaptive Alpha for Linear Models Example: Balanced One Way Anova

In order to compare with the approach of Pérez and Pericchi (2014), we
will use the strategy of a fixed sample size for a designed experiment. Here
we used an effect size of f = 0.25, which according to Cohen (1988)
represents a medium effect size. We fixed α = 0.05 and the power at 0.8 .
The sample sizes obtained were n0 = 64, 40 and 26 for k = 2, 5 and 10,
respectively.

k
Adaptive α for linear model Adaptive α (PP 2014)

r 2 5 10 2 5 10
50 0.057 0.0327 3.6× 10−3 0.058 0.0333 3.8× 10−3

100 0.038 0.0087 2.2× 10−4 0.038 0.0093 2.4× 10−4

500 0.016 0.0004 3.1× 10−7 0.015 0.0005 3.4× 10−7

1000 0.011 0.0001 1.8× 10−8 0.010 0.0001 2.0× 10−8
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Adaptive Alpha for Linear Models Example: Balanced One Way Anova

Different calibration strategies for k = 2. All strategies yield comparable
results, with the strategy based on PBIC being somewhat more drastic in
its penalization for higher samples (for this particular case).

k = 2
r Minimal sample Simple Calibration PBIC Calibration
4 0.0523 0.0412 0.0283
10 0.0342 0.0235 0.0159
50 0.0130 0.0090 0.0061
100 0.0087 0.0060 0.0041
500 0.0035 0.0024 0.0017
1000 0.0024 0.0017 0.0011
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Adaptive Alpha for Linear Models Example: Balanced One Way Anova

Simulation

Inspired by an example in Sellke et al (2001)

Simulate r data points from each of two normal distributions
N(µ1, σ) and N(µ2, σ). We replicate this 2K times. For K of the
simulations, µ1 − µ2 = 0, while for the other K µ1 − µ2 = ∆ > 0.

For all 2K replications, test the hypotheses H0 : µ1 = µ2 vs
H1 : µ1 ̸= µ2, and then count how many of the p-values lie between
0.05− ε and 0.05. Note that all these p-values would be deemed
enough for rejecting H0 if α = 0.05 is selected.

Determine the proportion of “significant” p-values obtained from
samples where H0 is true (false discoveries) .

Repeat the whole experiment R times for stability.
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Adaptive Alpha for Linear Models Example: Balanced One Way Anova

Median percentage of false discoveries for R = 100 replicates of the
simulation scheme with K = 4000, ∆ = 0.25, σ = 1 and ε = 0.04, for
r = 10, 50, 100, 500 and 1000.

% of samples with 0.01 < p < 0.05
without adjustment with PBIC calibration

r 2-groups 2-group
10 39.06% 34.18%
50 21.43% 8.57%
100 15.73% 3.07%
500 39.04% 0.22%
1000 97.15% 0.11%

M.E. Pérez (UPR Ŕıo Piedras) Building bridges 28 / 55



Adaptive Alpha for Linear Models Example: Balanced One Way Anova

The proportion of false positives is not monotonic with r , but always far
higher than 5%. For r = 1000, almost 100% of these significant values
near 0.05 are generated from H0.

When the α level is corrected according to the method suggested using a
calibration strategy based on PBIC, the proportion of false positives
decreases steadily, providing a more reliable Type I error control.
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Adaptive Alpha for Linear Models Linear regression

Linear regression

Consider the models

Mi : yv = β1 + β2xv2 + · · ·+ βixvi + εv

Mj : yv = β1 + β2xv2 + · · ·+ βixvi + βi+1xv(i+1)βj + · · ·+ xvj + ϵv

with 1 ≤ v ≤ n and 2 ≤ j ≤ k, then

|Xt
jXj | = n(n − 1)j−1

j∏
l=2

s2l |Rj |

where s2l and Rj are the variance and the correlation matrix of the
predictors in model Mj respectively.
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Adaptive Alpha for Linear Models Linear regression

Then

b = (n − 1)j−i

(
j∏

l=i+1

s2l

)
|Rj−i − Rt

ijR
−1
i Rij |,

Here Rij is the correlation matrix between predictors of the models Mj that
are not in Mi with predictors of the model Mi , and Rj−i is the correlation
matrix of the predictors of the models Mj that are not in Mi ,
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Adaptive Alpha for Linear Models Linear regression

Example: Car Mileage Data

(Acuña 2013)
We want to predict the average mileage per gallon (denoted by mpg) of a
set of n = 82 vehicles using four possible predictor variables: cabin
capacity in cubic feet (vol), engine power (hp), maximum speed in miles
per hour (sp) and vehicle weight in hundreds of pounds (wt).

1. H0 : M2 :(mpg=β1+β2wti+ϵi ) vs H1 : M3 :(mpg=β1+β2wti+β3spi+ϵi )

2. H0 : M2 :(mpg=β1+β2wti+ϵi ) vs H1 : M3 :(mpg=β1+β2wti+β3hpi+ϵi )

3. H0 : M2 :(mpg=β1+β2wti+ϵi ) vs H1 : M3 :(mpg=β1+β2wti+β3voli+ϵi )

For these tests
b = (n − 1)s23 (1− ρ223),

where s23 is the variance of the entering predictor in model M3 and ρ23 is
the correlation between wt y the new predictor in M3.
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Adaptive Alpha for Linear Models Linear regression

Test Predictor Var(·) Cor(wt,·) b p-value αSimple αPBIC

1 sp 197.1 0.68 8612.9 0.0325 0.0004 0.0134
2 hp 3230.9 0.83 80449.5 0.1661 0.0001 0.0046
3 vol 491.3 0.38 33901.1 0.6482 0.0002 0.0087

In all cases, the significance level is substantially reduced, specially using
the simple calibration. Note that the strongest correction corresponds to
the engine power (hp). This variable has both the largest variance and the
highest correlation with the weight.
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Adaptive α revisited: PBIC strategy

Adaptive α revisited: PBIC strategy

The PBIC strategy for the calibration of the constant could also have been
used in (1), leading to

αn(q) =
[χ2

α(q) + q log(n) + C ]
q
2
−1

n
q
2 2

q
2
−1Γ

(q
2

) × exp

{
−1

2

(
χ2
α(q) + C

)}
. (8)

Here C is calculated similarly to the expression given for linear models.

Note that this adaptive α is still of BIC structure, since, the expression
χ2
α(q) + q log(n) remains.
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From p-Values to Posterior Probabilities of Null Hypothesis

From p-Values to Posterior Probabilities of Null Hypothesis

It is by now well known by practitioners, that p-values are not posterior
probabilities of a null hypothesis, which is what science needs to declare a
scientific finding.

The so-called Robust Lower Bound BF ≥ −e · p · log(p) (Vovk 1993,Sellke
et al 2001) links the p-value with real model probabilities, but does not
take into account the dependence of the evidence on the sample size
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From p-Values to Posterior Probabilities of Null Hypothesis

Our goal is to adapt the Robust Lower Bound, make it dependent on the
sample size, and approximate actual Bayes Factors, for any sample size.

A further complication arises when the null hypotheses depend on
unknown nuisance parameters. Here, what are usually called p-values do
not follow an Uniform distribution.
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From p-Values to Posterior Probabilities of Null Hypothesis Pseudo-P-Values and Robust Lower Bound

Pseudo-P-Values and Robust Lower Bound

We will use the general definition of p-value given by Casella and Berger
(2001, p.397)

Definition

A p-value p(X) is a statistic satisfying 0 ≤ p(x) ≤ 1 for every sample
point x. Small values of p(X) give evidence that H1 is true. A p-value is
valid if, for every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α.

We will consider any p-value complying the definition with strict inequality
for a non-zero measure set of α values a pseudo-p-value.
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From p-Values to Posterior Probabilities of Null Hypothesis Pseudo-P-Values and Robust Lower Bound

The “Robust Lower Bound” (RLB) is:

BL(p) =

{
−e · p · log(p) p < e−1

1 otherwise

when p|H0 ∼ U(0, 1) and p|H1 ∼ Beta(ξ, 1) for 0 < ξ < 1 (see Sellke et al
2001)

Consider now the Hypothesis test

H0 : p ∼ Beta(ξ0, 1) vs H1 : p ∼ f (p|ξ)

with ξ0 fixed but arbitrary and f (p|ξ) ∼ Beta(ξ, 1) for 0 < ξ < 1
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From p-Values to Posterior Probabilities of Null Hypothesis Pseudo-P-Values and Robust Lower Bound

Using an argument very similar to the one used in Sellke et al (2001) It
can be shown that a Robust Lower Bound in this setting is

BL(p, ξ0) =

{
−e · ξ0 · pξ0 log(p) p < e−1

1 otherwise
(9)

where ξ0 has to be estimated or calculated theoretically, but we know that
ξ0 = 1 when the p-value is not pseudo-p-value.

For any Bayes Factor B01,

B01 ≥ BL(p) > BL(p, ξ0) with ξ0 > 1
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From p-Values to Posterior Probabilities of Null Hypothesis Pseudo-P-Values and Robust Lower Bound

Theorem

The RLBξ is a valid p-value, for ξ ≥ 1, that is,

P(BL(p, ξ) ≤ α|p ∼ f (p|ξ)) ≤ α, for each 0 ≤ α ≤ 1.
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From p-Values to Posterior Probabilities of Null Hypothesis Adjusting RLBξ with Adaptive α

Adjusting RLBξ with Adaptive α

When we subtitute the adaptive α (8) in the RLBξ given by equation (9),
we obtain the following Bayes Factor

B(α, q, n, ξ0) = −αξ0 log(α)Γ(q/2)ξ0n
ξ0q
2

[
2

χ2
α(q) + q · log(n) + C

] ξ0q
2 −(ξ0−1)

(10)

For an uniform p-value , ξ0 = 1 and the Bayes factor simplifies to

B(α, q, n) = −α log(α)Γ(q/2)n
q
2

[
2

χ2
α(q) + q · log(n) + C

] q
2

. (11)
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From p-Values to Posterior Probabilities of Null Hypothesis Adjusting RLBξ with Adaptive α

The refined version to linear models, for this calibration is obtained when
evaluated in (7)

B(α, q, n, b) = −α log(α)Γ(q/2)b
n−j

2(n−1)

[
2(n − 1)

(gn,α(q) + log(b) + C )(n − j)

] q
2

(12)

in this case, we only consider ξ0 = 1.
In all cases, n is the effective sample size (Berger et al 2014)
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From p-Values to Posterior Probabilities of Null Hypothesis Adjusting RLBξ with Adaptive α

Obtaining bounds for P(H0|Data)

The lower bounds for Bayes Factors RLBξ in (10) and (12) can be used to
produce bounds for the posterior probability of the null hypothesis H0.
. Since for any Bayes factor B01

B01 ≥ BL(p, ξ0) con ξ0 ≥ 1, fixed but arbitrary,

a lower bound for the posterior probability of the null hypothesis can be
obtained as:

minP(H0|Data) =
[
1 +

1

BL(p, ξ0)

]−1

. (13)
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From p-Values to Posterior Probabilities of Null Hypothesis Adjusting RLBξ with Adaptive α

Figure: Lower bound for posterior probabilities for the null hypothesis H0 (in 13)
for ξ0 = 1, ξ0 = 1.1, ξ0 = 1.2, ξ0 = 1.3.
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From p-Values to Posterior Probabilities of Null Hypothesis Example:Testing Equality of Two Normal Means

Example:Testing Equality of Two Normal Means

H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2, with known non-equal variances, σ2
1

and σ2
2

Define α = (µ1 + µ2)/2 and β = (µ1 − µ2)/2. Then we can write this
problem using linear models.

Y = B
(
α
β

)
+ ϵ with B =



1 1
...

...
1 1
1 −1
...

...
1 −1


We want to compare M0 : β = 0 versus M1 : β ̸= 0.
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From p-Values to Posterior Probabilities of Null Hypothesis Example:Testing Equality of Two Normal Means

Then for the adjustments of the Bayes factor based in the PBIC strategy,

C = −2 log
(1− e−v )√

2v

v = β̂2

d(1+ne) , d =
(
σ2
1

n1
+

σ2
2

n2

)
, ne = max

{
n21
σ2
1
,
n22
σ2
2

}(
σ2
1

n1
+

σ2
2

n2

)
.

A special case is the standard test of equality of means when
σ2
1 = σ2

2 = σ2. Then

ne = min

{
n1

(
1 +

n1
n2

)
, n2

(
1 +

n2
n1

)}
.
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From p-Values to Posterior Probabilities of Null Hypothesis Example:Testing Equality of Two Normal Means

On the other hand, define δ = µ1 − µ2 with σ2
1 = σ2

2 = σ2

H0 : µ1 = µ2 ↔ δ = 0 vs H0 : µ1 ̸= µ2 ↔ δ ̸= 0
Assigning priors

δ|σ2,H1 ∼ Normal(0, σ2/τ0), τ0 ∈ (0,∞)

π(σ2) ∝ 1/σ2 for both H0 and H1.

The Bayes factor is:

BF01 =

(
n + τ0
τ0

)1/2
(
t2 τ0

n+τ0
+ l

t2 + l

) l+1
2

where t = |Ȳ|
s/

√
n
is a t-statistic with l = n − 1 degrees of freedom and

n = n1 + n2 (see Roger 2018).

M.E. Pérez (UPR Ŕıo Piedras) Building bridges 47 / 55



From p-Values to Posterior Probabilities of Null Hypothesis Example:Testing Equality of Two Normal Means

Posterior probability for the null hypothesis H0 for n = 50 and n = 100 using the Bayes
factor RLBξ0 with ξ0 = 1, the Bayes factor BF01, the Bayes factor BFL and BFG
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From p-Values to Posterior Probabilities of Null Hypothesis Example: Fisher’s Exact Test

Example: Fisher’s Exact Test

(Example of pseudo-p-value, see the example 8.3.30 in Casella and Berger
2001).
Let S1 and S2 be independent observations with S1 ∼ binomial(n1, p1) and
S2 ∼ binomial(n2, p2).

H0 : p1 = p2 vs H1 : p1 ̸= p2.

Under H0, let p be the common value for p1 = p2. The the joint pmf of
(S1,S2) is

f (s1, s2|p) =
(
n1
s1

)(
n2
s2

)
ps1+s2(1− p)n1+n2−(s1+s2)
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From p-Values to Posterior Probabilities of Null Hypothesis Example: Fisher’s Exact Test

The conditional pseudo-p-value is

p(s1, s2) =

min{n1,s}∑
j=s1

f (j |s), (14)

the sum of hypergeometric probabilities, with s = s1 + s2.

It does not seem to be simple to estimate the appropriate ξ0 that best fits
the pseudo-p-value in (14). Some arbitrary values will be used.
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From p-Values to Posterior Probabilities of Null Hypothesis Example: Fisher’s Exact Test

We will compare the performance of the approximate probabilities for H0

with those based on a Bayes Factor calculate using the following prior .

π(p) =

{
π0 p = (p1 = p2)

π1g1(p) p ̸= (p1 = p2)

It can be shown that the Bayes Factor is is

B01 =
f (s|(p1 = p2))

m1(s)
.

Now, if we take g1(p) = Beta(a, b) such that E (p) =
a

a+ b
= (p1 = p2),

then

BFTest =
B(a, b)

B(s + a, n1 + n2 − s + b)
ps(1− p)n1+n2−s .
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From p-Values to Posterior Probabilities of Null Hypothesis Example: Fisher’s Exact Test

Posterior probability for the null hypothesis H0 of equality of proportions in Fisher Exact
Test for n = 50 and n = 100, using the Bayes factor RLBξ0 with ξ0 = 1, the Bayes
factor BFTest , the Bayes factor BFGξ0 , and the Bayes factor BFG .
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Discussion and Final Comments

Discussion and Final Comments

The adaptive α provides guidance for adjusting significance to the
sample size. The Linear Model version incorporates not only the
sample size and the difference of dimensions, but also the information
provided by the predictors or the design, and particularly their
correlations, correcting for co-linearity.

The adaptive α is simple to use, and gives equivalent results than a
sensible Bayes Factor, like Bayes Factors with Intrinsic Priors

These results make use of state of the art large sample approximations
of Bayes Factors like the PBIC and can be coupled with recent
sensible base thresholds like α = 0.005, Benjamin et al (2017)
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Discussion and Final Comments

Discussion and Final Comments

Lower bounds have been an important development to give
practitioners alternatives to classical testing with fixed α levels, but
their usefulness is limited for large sample sizes. The calibrations
proposed here can alleviate this problem.

The (approximate) Bayes factors (10) and (12) are simple to use and
provide results equivalent to the sensitive p-value-Bayes factors of
hypothesis tests. We extend the validity of the approximation for
”pseudo-p-values” which are ubiquitous in statistical practice.

It’s our hope that this methods will help to improve the replicabilitiy
of scientific findings, making Bayesian Hypothesis Testing more
practical and in line with familiar concepts of the traditional NHST.
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Discussion and Final Comments

The Department for Mathematics of the University of
Puerto Rico, Rio Piedras Campus is announcing a
tenure-track position in Statistics or Applied Probability.

https://www.uprrp.edu/jobs

maria.perez34@upr.edu

Deadline for documents: October 2, 2022
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